Number System Class 10 Computer Science

 Number System Class 10 Computer Science 

Introduction

Many years ago, the concept of a number system evolved when people used their fingers, sticks, pebbles, knots of rope, and different symbols for counting and simple addition or subtraction. In course of time, people use calculator devices and then computers for calculation.  The group of digits or symbols used to express quantities as the basis for doing different calculations is called the number system.

Types of Number System

Nowadays, different types of number systems have developed. The number system is differentiated by its base or radix. The base is defined as the total number of digits available in the number system. So, the number system is divided into main four types on the basis of the base value. They are:

1.      Decimal number system

2.      Binary number system

3.      Octal number system

4.      Hexadecimal Number System

Number System
Number System


 

1. Decimal Number System

The number system that we use in our day to day life is the decimal number system.

The decimal number system has a base 10 as it uses 10 digits from 0 to 9. In a decimal number system, the successive positions to the left of the decimal point represents units, tens, hundreds, thousands, and so on.

Each position represents a specific power of the base (10). For example, the decimal number 539 consists of the digit 9 in the unit’s position, 3 in the tens position, and 5 in the hundreds position. Its value can be written as

(539)10        =(5×100)+(3×10)+(9×1)

                    = (5×102) + (3×101) + (9×100)

                    = 500 + 30 + 9

                    = 539

2.             Binary Number System

The number system that is used in computer systems to hold any data on bits is the binary number system. The binary number system has base 2 as it uses 2 digits 0 and 1. For example 100012, 111012, 1012, etc.

3.             Octal Number System

The number system that is used in the computer system to hold any data on byte is the octal number system. Octal number system has a base 8 as it uses 8 digits from 0 to 7.

For example 1208 , 65708 , 320708 , etc.

4.             Hexadecimal Number System

The number system that is used in computer system to hold any data is the hexadecimal number system. Hexadecimal number system has base 16 as it uses 16 digits (10 digits from 0 to 9 and 6 letters from A to F). Letters represent the numbers starting from 10 that is A = 10, B = 11, C = 12, D = 13, E = 14 and F = 15. For example, (7A2)16, (1AC)16, (56B)16, (BOD)16 etc.

Number System Conversion

People commonly use decimal number system in their daily life. Computer use binary, octal and hexadecimal number system according to its model or brand. We cannot easily understand binary number system like this way computer can't understand decimal number system. So there are different methods to convert one number system to another as follows:

1.          Decimal to Binary Number System Conversion

To convert decimal number to binary number follows the following steps:

a.             Divide the given decimal number by 2 and write down the remainder.

b.             Divide quotient by 2 and again write down the remainder.

c.             Repeat the process until the quotient becomes zero.

d.             Write the remainders from bottom to top.


Examples

Decimal to binary conversion


Decimal to binary conversion






2.      Binary to Decimal Number System Conversion

            To convert binary number to decimal number follows the following steps:

Binary to decimal



3.      Decimal to Octal number system conversion

To convert decimal number to octal number follows the following steps:

a.             Divide the given decimal number by 8 and write down the remainder.

b.             Divide quotient by 8 and write down the remainder.

c.             Repeat the process until the quotient becomes zero.

d.             Write the remainders from bottom to top.

Decimal to octal conversion






























     

octal to decimal

5.      Decimal to Hexadecimal Number System Conversion

To convert decimal number to hexadecimal number follows the following steps:

a.             Divide the given decimal number by 16 and write down the remainder.

b.             Divide quotient by 16 and write down the remainder.

c.             Repeat the process until quotient becomes zero.

d.             Write the remainders from bottom to top.

Decimal to hexadecimal conversion

























 

hexadecimal to decimal


 Binary Table

Decimal

Hexadecimal

Octal

Binary

0

0

0

0

1

1

1

1

2

2

2

10

3

3

3

11

4

4

4

100

5

5

5

101

6

6

6

110

7

7

7

111

8

8

10

1000

9

9

11

1001

10

A

12

1010

11

B

13

1011

12

C

14

1100

13

D

15

1101

14

E

16

1110

15

F

17

1111



7.      Binary to Octal Number System Conversion

To convert binary number to octal number follows the following steps:

a.             Arrange binary digits in group of three from right to left.

b.             Write respective octal number for each binary group.

c.             Give the result base 8.

Examples:

i.               (110010011)2 = (?)8

3  digits combination      = 110               010      011

                 Octal Equivalent           = 6                2          3

(110010011)2 = (623)8

Rough

4 2 1            4 2 1           4 2 1 ( Positive Powers of 2)

                 1 1 0           0 1 0           0 1 1

                 4 + 2           2                 2 + 1 (Adding the numbers for 1)

                 6                 2                 3

ii.            (100010011000)2 = (?)8

3  digits combination        = 100            010      011      000

                 Octal Equivalent           = 4                2          3            0

(100010011000)2 = (4230)8

Rough

 4 2 1           4 2 1            4 2 1             4 2 1 (Positive Powers of 2)

                 1 0 0           0 1 0            0 1 1             0 0 0

                 4                 2                 2+1                  0          ( Adding the numbers for 1)

                 4                 2                 3                       0

8.          Octal to Binary Number System Conversion

To convert octal number to binary number follows the following steps:

a.             Write the octal digits separately.

b.              Write binary triple equivalent to each octal number.

c.             Give the result base 2.

Examples:

i.               (236)8 = (?)2

             Octal number                =       2                 3                  6

             Binary equivalent          =       010             011              110

(236)8 = (010011110)2

 

 

Rough

2                                  3                  6          (Octal Numbers

             4 2 1           4 2 1           4 2 1

             0 1 0           0 1 1           1 1 0                 (3 bits equivalent Binary number) It is the sum of the digits that requires to bring the octal number of the question) For example: 6 = 4+2+0 (Added numbers are 1 and remaining 0)   

ii.            (704)8 = (?)2

             Octal number                =       7                 0                 4

             Binary equivalent          =       111             000             100

(704)8 = (111000100)2

Rough

             7                 0                  4

             4 2 1           4 2 1            4 2 1

             1 1 1           0 0 0            1 0 0    (3 bits equivalent Binary number) It is the sum of the digits that requires to bring the octal number of the question) For example: 4 = 4+0+0 (Added numbers are 1 and remaining 0)   

 

9.      Binary to Hexadecimal number system conversion

To convert binary number to hexadecimal number follows the following steps:

a.             Arrange binary digits in group of four from right to left.

b.             Write respective hexadecimal number for each binary group.

c.             Give the result base 16.

Examples:

i.           (110010011)2 = (?)16

             4 digits combination     =       0001

1001

0011

             Hexadecimal equivalent =     1

(110010011)2 = (193)16

Rough

             8 4 2 1        8 4 2 1        8 4 2 1

0                            0 0 1        1 0 0 1         0 0 1 1

     1                          8+1              2+1

                1                 9                 3

ii.      (10001001100)2 = (?)16

9

3

             4 digits combination     =       0100

0100

1100

             Hexadecimal equivalent=      4

(110010011)2 = (193)16

Rough

             8 4 2 1        8 4 2 1        8 4 2 1

             0 1 0 0        0 1 0 0        1 1 0 0

             4                 4                 8+4

             1                 9                 12=C

 

4

C

10. Hexadecimal to Binary number system conversion

To convert hexadecimal number to binary number follows the following steps:

a.             Write binary equivalent 4 digits’ group to each hexadecimal number.

b.             Give the result base 2.

Examples:

i.       (9A3)16 = (?)2

             4 digits combination     =

0100

0100

1100

Hexadecimal number =

9

A

3

             Binary equivalent          =

(9A3)16 = (100110100011)2

 

Rough

1001

1010

0011

             8 4 2 1                 8 4 2 1

 

8 4 2 1

 

             9                          A=10

 

3

 

             8 4 2 1                 8 4 2 1

 

8 4 2 1

 

             1 0 0 1                 1 0 1 0

ii.      (B0D)16 = (?)2

 

0 0 1 1

 

Hexadecimal number =

B

0

D

             Binary equivalent          =

(B0D)16 = (101100001101)2

Rough

1011

0000

1101

            B=11                    0

D=13

 

             8 4 2 1                 8 4 2 1

8 4 2 1

 

             1 0 1 1                 0 0 0 0

1 1 0 1

 

 

11. Octal to Hexadecimal number system conversion

To convert octal number to hexadecimal number follows the following steps:

a.             Write binary triple equivalent to each octal number

b.             Now, again form the group of four digits from right to left.

c.             Write respective hexadecimal number for each binary group.

d.             Give the result  base 16.

Examples:

i.           (236)8 = (?)16

Octal number                =

2

3

6

Binary equivalent          =

010

011

110

4 digits binary               =

1 0 01

1 1 1 0

 

Hexadecimal equivalent=

9

E

 

(236)8 = (9E)16

12. Hexadecimal to Octal number system conversion

To convert hexadecimal number to octal number follows the following steps:

a.             Write binary equivalent 4 digits group to each hexadecimal number.

b.             Now, again form the group of three digits from right to left.

c.             Give the result base 8.

Examples:

i.           (9A3)16 = (?)8

                 Hexadecimal                 =       9                 A                3

                 Binary equivalent          =       1001           1010           0011

                 3 digits binary               =       100             110             100             011

                 Octal equivalent           =       4                 6                 4                 3

(9A3)16 = (4643)8

Binary Calculation

Generally, there are four types of binary calculation. They are:

1.         Binary Addition,

2.         Binary Subtraction,

3.         Binary Multiplication

4.         Binary Division.

1.       Binary Addition

Binary addition is similar to decimal numbers addition. Some rules for adding binary numbers are:

0  + 0 = 0

0  + 1 = 1

1  + 0 = 1

1  + 1 = 10 (Write '0' here, carry 1 to next column)

Example:

                                                    1  0  1  0

                                                 + 1  1  0  1

                                                 1 0  1  1  1

Hence, 1010  + 1101 =  1  0  1  1  1.

2. Binary Subtraction

Binary subtraction is similar to decimal number subtraction. Some rules for subtracting binary numbers are:

0  - 0 = 0

1  - 0 = 1

1 - 1 = 0

0    - 1 = 1 (with borrow 1 from the left column)

Example

1 0   1  1  1

                                                    -     1  0  1

                                                1  0  0  1  0

Hence, 10 111 – 101 =  1  0  0  1  0.

3. Binary Multiplication

Binary multiplication is similar to decimal number multiplication. Some rules for multiplying binary numbers are:

                               0×0=0

                               1×0=0

                               0×1=0

                               1×1=1

                                    

 

Example                 1 0 0[1]

                               × 1 0 1

                          10 0 1

0        0 0 0

                    1 0 0 1

                         1 0 1 1 0 1

Hence 1001 ×101 = 101101

Binary Division

Binary division is similar to decimal number division. Some rules for dividing binary numbers are:

0 ÷ 0 = 0

0  ÷ 1 = 0

1  ÷ 1 = 1

1 ÷ 0 = undefined

Example

ii.   Divide 100101 by 110
Soln:
     110)100101(110
            -110
               110
              -110
                 X 1
                   - 0
                    1                           
 
:. Q= 110          R= 1


 

 

 

Concept of bits, bytes, nibble, and word

Bits

Bits stands for binary digits. It is the smallest unit of information in computer. It represents 0 or 1.

Nibble

The combination of four bits is called a nibble. Examples: 1001, 1000, etc.

Byte

The combination of eight bits is called a byte. Examples:  10111101, 10110110, 10011110, etc.

Word

Word is the combination of bits. It is the number of bits that can process and transfer by the processor. Computers usually have a word size of 8 bits, 16 bits, 32 bits, 64 bits, 128 bits, etc.

The different measurement units of data in a computer are:

 

Bit = 1 or 0

1 Kilobyte = 1024byte

1 Petabyte= 1024 TB

1Crumb =2 bits

1 Megabyte= 1024 KB

1Exabyte = 1024 PB

1 Nibble = 4 bits

1 Gigabyte= 1024 MB

1Zettabyte = 1024EB

1 Byte = 8 bits or 2Nibble or

1character

1 Terabyte = 1024 GB

1Yottabyte = 1024 ZB

 






Comments